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A B S T R A C T

The Bitcoin Lightning Network (BLN) was launched in 2018 to scale up the number of transactions between
Bitcoin owners. Although several contributions concerning the analysis of the BLN binary structure have
recently appeared in the literature, the properties of its weighted counterpart are still largely unknown. The
present contribution aims at filling this gap, by considering the Bitcoin Lightning Network over a period of
18 months, ranging from 12th January 2018 to 17th July 2019, and focusing on its weighted, undirected,
daily snapshot representation - each weight representing the total capacity of the channels the two involved
nodes have established on a given temporal snapshot. As the study of the BLN weighted structural properties
reveals, it is becoming increasingly ‘centralized’ at different levels, just as its binary counterpart: (1) the
Nakamoto coefficient shows that the percentage of nodes whose degrees/strengths ‘enclose’ the 51% of
the total number of links/total weight is rapidly decreasing; (2) the Gini coefficient confirms that several
weighted centrality measures are becoming increasingly unevenly distributed; (3) the weighted BLN topology
is becoming increasingly compatible with a core–periphery structure, with the largest nodes ‘by strength’
constituting the core of such a network, whose size keeps shrinking as the BLN evolves. Further inspection of
the resilience of the weighted BLN shows that removing such hubs leads to the network fragmentation into
many components, an evidence indicating potential security threats — as the ones represented by the so called
‘split attacks’.
1. Introduction

The Bitcoin Lightning Network (BLN) [1] represents an attempt
to overcome one of the main limitations of the Bitcoin technological
design, i.e. scalability : at the moment, only a limited amount of trans-
actions per second, whose number is proportional to the size of blocks
and their release frequency, can be processed by Bitcoin, a major short-
coming preventing the adoption of this payment system at a global scale
— especially when considering that classic payment mechanisms are
able to achieve tens of thousands of transactions per second. Increasing
the size of the blocks has been proposed as a solution; implementing
this choice, however, would require (1) a larger validation time, (2) a
larger storage capability and (3) larger bandwidth costs, hence favoring
a more centralized validation process: in fact, fewer entities would
become able to validate the new blocks, thus making the system as a
whole more prone to faults and attacks.

Developers have tried to break the trade-off between block size and
centralization by proposing to process transactions off-chain, i.e. by
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means of a ‘Layer 2’ protocol that can operate on top of blockchain-
based cryptocurrencies such as Bitcoin: nowadays, such a protocol is
known with the name of Bitcoin Lightning Network (BLN) and works by
creating payment channels across which any two users can exchange
money without having the data related to their transactions burdening
the entire blockchain [2,3] (see Fig. 1).

The BLN has recently raised a lot of interest: analyses concerning
the BLN functioning have found it to allow for a large number of
transactions to be processed although rewarding fees are not high
enough to promote a large participation in the mining process [4];
Beres et al. [5] analyzed transaction fees and privacy provisions, finding
that the participation of most nodes is, in fact, ‘economically irrational’.

On the other hand, analyses concerning the BLN network structure
have found it to be characterized by a scale-free topology [6]; besides,
Lin et al. [7] and Martinazzi et al. [8] considered the evolution of
the former and found it to have become increasingly centralized at
different levels. Both features — common to several cryptocurrency
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Fig. 1. Pictorial representation of the BLN functioning. The network structure refers to day 16-01-2018, i.e. when the network was constituted by seven nodes (representing users)
and eight links (representing open channels). The size of each node is proportional to its degree (i.e. the bigger the node, the larger its degree) while the color of each node is
proportional to its strength (i.e. the darker the node, the larger its strength). The width and color of each link are proportional to its weight, i.e. the capacity of the channel it
depicts.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
transaction networks such as Bitcoin, Bitcoin Cash, Dash, Dogecoin,
Ethereum, Feathercoin, Litecoin, Monacoin and Z-Cash [9–12] - may
have undesirable consequences such as causing a considerable fraction
of payments to be easily de-anonymizable [5] and making it prone to
channel exhaustion or attacks aimed at isolating nodes (thus, compro-
mising their reachability, the payment success ratio, etc.) [13,14]; a
similar conclusion is reached in [15], where the authors analyze the
robustness of the BLN against three different types of attacks (locking
channels, disconnecting pairs of nodes and isolating hubs) and find it
to be disruptable at a relatively low cost; still, Conoscenti et al. [16]
have suggested the BLN to be resilient against the removal of nodes
that do not have a significant influence on the probability of success of
a payment. More on the modeling side, Bartolucci et al. [17] proposed a
fitness-based network model for the emergence of the BLN - a proposal
that is reminiscent of the ‘fittest-gets-richer’ principle, suggested by
Javarone et al. [18], as the mechanism driving the evolution of the
global structure of the Bitcoin network and the Bitcoin Cash network.

For a summary of the existing literature on cryptocurrency transac-
tion networks see Wu et al. [19].

2. Data

Most of the aforementioned contributions have just focused on the
analysis of the BLN binary structure, leaving its weighted counterpart
largely unexplored [7]. With the present paper we aim at filling this
gap, by studying the weighted properties of the BLN daily snapshot
representation, at the micro-, meso- and macro-scale, across a period
of 18 months, i.e. from 12th January 2018 to 17th July 2019.

In order to properly understand the structural details of the afore-
mentioned representation, let us briefly sum up how the BLN works.
Payments in the BLN are source-routed and onion-routed - features that
are there to enhance the users privacy: while ‘source-routed’ means that
the source node is the one responsible for finding a route connecting
itself to the final one, ‘onion-routed’ means that the intermediate nodes
only know the ones lying ‘one step-before’ and ‘one step-after’ them, in
the payment route.

In order to pre-compute the entire payment route, the sender must
have a reasonably up-to-date view of the network topology. Nodes
in the BLN regularly broadcast information about the channels they
participate in: such a mechanism, called gossip, allows other nodes to
keep their view of the network topology up-to-date.

The BLN topology can be visualized by means of the so-called routing
table. For this paper, we took a snapshot of the routing table every
15 min, between January 12th 2018, at blockheight 503.816, to July
17th 2019, at blockheight 585.844 [20]: these snapshots were, then,
aggregated into timespans, each timespan representing a constant state
of a channel from its start to its end; for the present analysis, we
considered the daily snapshot representation of the BLN, including all
2

channels that were found to be active during that day. Each weight
defining the BLN representation considered in the present work, thus,
indicates the total capacity of the channels the two involved nodes
have established on a given temporal snapshot — the channel capacity
coinciding with the total amount of bitcoins needed to keep it open as
well as the maximum amount of tokens allowed to be exchanged across
it (see Fig. 1).

Importantly, here we do not rest upon estimates of the number of
daily blocks – obtainable by considering that the time between the
appearance of two subsequent blocks, in the blockchain, is Poisson
distributed with an expected value of 10 min – but on the exact time our
channels have been opened: since every channel consists of an unspent
transaction output on the blockchain, we can determine the size of a
channel and its opening and closing time within minutes.

3. Methods

Notation. On a generic, daily snapshot 𝑡, the BLN can be described as
a weighted, undirected network with total number of nodes 𝑁 (𝑡) and
represented by an 𝑁 (𝑡)×𝑁 (𝑡) symmetric matrix 𝐖(𝑡) whose generic entry
𝑤(𝑡)

𝑖𝑗 indicates the total capacity of the channels nodes 𝑖 and 𝑗 have
established during the snapshot 𝑡 [21,22]. Consistently, the generic
entry of the BLN binary adjacency matrix 𝐀(𝑡) reads 𝑎(𝑡)𝑖𝑗 = 1 if 𝑤(𝑡)

𝑖𝑗 > 0
and 𝑎(𝑡)𝑖𝑗 = 0 otherwise: the presence of a link between any two nodes 𝑖
and 𝑗, i.e. 𝑎(𝑡)𝑖𝑗 = 1, indicates that one or more payment channels have
been opened, between the same nodes, during the snapshot 𝑡. As a last
remark, we will focus on the largest connected component (LCC) of the
BLN, throughout its entire history — the percentage of nodes belonging
to it being steadily above 90%.

For the sake of illustration, we will plot our results for four snap-
shots, i.e. the ones whose LCC is characterized by a number of nodes
amounting at 100, 1.000, 3.000, 5.000 and corresponding to the days
24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019, respectively (see
Fig. 2).

Degree and strength distributions. The total number of channels (i.e.
links) that have been opened during the snapshot 𝑡 is provided by
𝐿(𝑡) =

∑𝑁 (𝑡)

𝑖=1
∑𝑁 (𝑡)

𝑗=𝑖+1 𝑎
(𝑡)
𝑖𝑗 ; on the other hand, the total number of channels

node 𝑖 participates in coincides with its degree, i.e. 𝑘(𝑡)𝑖 =
∑𝑁 (𝑡)

𝑗(≠𝑖)=1 𝑎
(𝑡)
𝑖𝑗 .

The weighted counterparts of the notions above coincide with the total
weight of the network, i.e. 𝑊 (𝑡) =

∑𝑁 (𝑡)

𝑖=1
∑𝑁 (𝑡)

𝑗=𝑖+1 𝑤
(𝑡)
𝑖𝑗 , and with the

total amount of money exchanged by node 𝑖, i.e. 𝑠(𝑡)𝑖 =
∑𝑁 (𝑡)

𝑗(≠𝑖)=1 𝑤
(𝑡)
𝑖𝑗 ,

a quantity often referred to as node strength or node capacity.
While inspecting the functional form of the degree and strength

distributions may reveal the presence of hubs, i.e. ‘large’, single nodes,
when dealing with cryptocurrencies it is of interest making a step
further and inspecting the presence of ‘large subgraphs’ of nodes. The
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Fig. 2. Pictorial representation of the four snapshots of the BLN whose LCC is characterized by a number of nodes amounting at 100, 1.000, 3.000, 5.000 and corresponding to
the days 24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019, respectively. The size of each node is proportional to its degree (i.e. the bigger the node, the larger its degree)
while the color of each node is proportional to its strength (i.e. the darker the node, the larger its strength). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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meaning of this sentence can be made more precise upon considering
the metric designed by Srinivasan et al. [23] to measure the number
of addresses required (to collude) for gathering over the 51% of the
overall mining power and named Nakamoto index: a high Nakamoto
coefficient indicates that many miners, or mining pools, need to com-
bine their power to reach the 51% threshold needed to take over
the blockchain. Here, we adapt it to quantify a ‘topological’ kind of
majority, by defining

𝑁𝑘 = min{𝑖 ∈ [1…𝑁] ∶
𝑁
∑

𝑖
𝑓𝑖 ≥ 0.51} (1)

where 𝑓𝑖 = 𝑘𝑖∕2𝐿 and

𝑁𝑠 = min{𝑖 ∈ [1…𝑁] ∶
𝑁
∑

𝑖
𝑓𝑖 ≥ 0.51} (2)

where 𝑓𝑖 = 𝑠𝑖∕2𝑊 : the first variant of the Nakamoto index can be
calculated by starting from the (node with) largest degree and add them
up until the condition above is satisfied; analogously, for the second
variant.

Assortativity and hierarchy. In order to gain insight into the higher-
order structure of the BLN, we can consider the quantities known as
average nearest neighbors degree, defined as

ANND𝑖 =

∑𝑁
𝑗(≠𝑖)=1 𝑎𝑖𝑗𝑘𝑗

𝑘𝑖
, ∀ 𝑖 (3)

nd average nearest neighbors strength, defined as

NNS𝑖 =
∑𝑁

𝑗(≠𝑖)=1 𝑎𝑖𝑗𝑠𝑗
𝑘𝑖

, ∀ 𝑖; (4)

hile plotting ANND𝑖 versus 𝑘𝑖 reveals the (either positive or negative)
ssortative character of a network, i.e. the presence of (either positive
r negative) correlations between degrees, plotting ANNS𝑖 versus 𝑘𝑖 re-
eals the presence of (either positive or negative) correlations between
egrees and strengths. On the other hand, the ‘cohesiveness’ of the
eighborhood of each node can be inspected by calculating the binary
lustering coefficient

CC𝑖 =

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖

𝑘𝑖(𝑘𝑖 − 1)
, ∀ 𝑖 (5)

defined as the percentage of triangles established by any two neighbors
of each node and the node itself. Its weighted counterpart reads

WCC𝑖 =

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖

𝑘𝑖(𝑘𝑖 − 1)
, ∀ 𝑖 (6)

and is intended to assign a ‘weight’ to each triangle counted by the BCC,
by weighing the connections shaping it. Plotting BCC𝑖 versus 𝑘𝑖 reveals
the (possibly) hierarchical character of a network, i.e. its organization
3

in sub-modules; plotting WCC𝑖 versus 𝑘𝑖, instead, provides a hint about
the magnitude of the nodes inter-connections as a function of the nodes
connectivity.

Disparity. The disparity index is defined as

𝑌𝑖 =
𝑁
∑

𝑗(≠𝑖)=1

[𝑤𝑖𝑗

𝑠𝑖

]2
=

∑𝑁
𝑗(≠𝑖)=1 𝑤

2
𝑖𝑗

𝑠2𝑖
=

∑𝑁
𝑗(≠𝑖)=1 𝑤

2
𝑖𝑗

[

∑𝑁
𝑗(≠𝑖)=1 𝑤𝑖𝑗

]2
, ∀ 𝑖 (7)

nd quantifies the (un)evenness of the distribution of the weights
constituting’ the 𝑖th strength over the 𝑘𝑖 links characterizing the con-
ectivity of node 𝑖. More specifically, the disparity index of node 𝑖 reads
𝑖 = 1∕𝑘𝑖 in case weights are equally distributed among the connections
stablished by it, i.e. 𝑤𝑖𝑗 = 𝑎𝑖𝑗𝑠𝑖∕𝑘𝑖, ∀ 𝑗, any larger value signaling an
xcess concentration of weight in one or more links.

entrality. Any index measuring the centrality of a node aims at quan-
ifying its importance in the network, according to some specific topo-
ogical criterion [24–27]. While the efforts of researchers have mainly
ocused on the definition of binary centrality measures, relatively little
ork has been done on their weighted counterparts. In what follows,
e will consider possible extensions of the centrality measures em-
loyed in [7], i.e. the degree, closeness, betweenness and eigenvector
entrality:

• the degree centrality [26,27] of node 𝑖 coincides with its degree,
normalized by the maximum attainable value, i.e. DC𝑖 = 𝑘𝑖∕(𝑁 −
1): the strength centrality of node 𝑖 generalizes it by simply
replacing the total number of ‘node-specific’ connections with the
total ‘node-specific’ weight. In what follows we will consider the
(simpler) definition

WDC𝑖 = 𝑠𝑖, ∀ 𝑖 (8)

from which it follows that the most central node, according to the
strength variant, is the one characterized by the largest percent-
age of weight ‘embodied’ by (the totality of) its connections;

• the closeness centrality [26,27] of node 𝑖 is defined as CC𝑖 =
(𝑁 −1)∕

∑𝑁
𝑗(≠𝑖)=1 𝑑𝑖𝑗 where 𝑑𝑖𝑗 is the topological distance between

nodes 𝑖 and 𝑗, i.e. the length of any shortest path connecting
them. The definition of weighted closeness centrality of node 𝑖 is
based on the redefinition of shortest path length which, in turn,
rests upon the redefinition of weighted distance between any two
nodes, i.e. 𝑑(𝑤)

𝑖𝑗 . Possible variants of the latter one read 𝑑(𝑤)
𝑖𝑗 =

min{𝑤𝑖ℎ + ⋯ + 𝑤ℎ𝑗} and 𝑑(𝑤)
𝑖𝑗 = min

{

1
𝑤𝑖ℎ

+⋯ + 1
𝑤ℎ𝑗

}

where ℎ

indexes the intermediary vertices lying on the path between 𝑖 and
𝑗, 𝑤𝑖ℎ …𝑤ℎ𝑗 are the weights of the corresponding edges and the
extremum is taken over all paths between 𝑖 and 𝑗. Naturally, the
meaning changes along with the chosen definition: while the first
one describes any two nodes as ‘closer’, the smaller the weights of
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the intermediate connections, the opposite is true when the sec-
ond one is considered. Hereby, we opt for the following definition
of weighted closeness centrality

WCC𝑖 =
𝑁 − 1

∑𝑁
𝑗(≠𝑖)=1 𝑑

(𝑤)
𝑖𝑗

, ∀ 𝑖 (9)

with 𝑑(𝑤)
𝑖𝑗 = min

{

1
𝑤𝑖ℎ

+⋯ + 1
𝑤ℎ𝑗

}

. This choice also implies that
once the path connecting nodes 𝑖 and 𝑗 has been individuated,
the WCC is nothing else that the harmonic mean of the weights
constituting it;

• the betweenness centrality [26,28–30] of node 𝑖 is given by
BC𝑖 =

∑𝑁
𝑠(≠𝑖)=1

∑𝑁
𝑡(≠𝑖,𝑠)=1 𝜎𝑠𝑡(𝑖)∕𝜎𝑠𝑡 where 𝜎𝑠𝑡 is the total number of

shortest paths between node 𝑠 and 𝑡 and 𝜎𝑠𝑡(𝑖) is the number of
shortest paths between nodes 𝑠 and 𝑡 that pass through node 𝑖.
The weighted counterpart of it can be defined as

WBC𝑖 =
𝑁
∑

𝑠(≠𝑖)=1

𝑁
∑

𝑡(≠𝑖,𝑠)=1

𝜎(𝑤)
𝑠𝑡 (𝑖)

𝜎(𝑤)
𝑠𝑡

, ∀ 𝑖 (10)

where, now, 𝜎(𝑤)
𝑠𝑡 is the total number of weighted shortest paths

between nodes 𝑠 and 𝑡 and 𝜎(𝑤)
𝑠𝑡 (𝑖) is the number of weighted

shortest paths between nodes 𝑠 and 𝑡 that pass through node 𝑖;
• the eigenvector centrality [26,30,31] of node 𝑖 is defined as

the 𝑖th element of the eigenvector corresponding to the largest
eigenvalue of the binary adjacency matrix — whose existence
is guaranteed in case the Perron–Frobenius theorem holds true.
According to the definition above, a node with large eigenvector
centrality is connected to other ‘well connected’ nodes. Such a
definition can be extended by considering the WEC𝑖, defined as
the 𝑖th element of the eigenvector corresponding to the largest
eigenvalue of the weighted adjacency matrix.

The Gini coefficient has been introduced to quantify ‘inequality’ in
wealth distribution [32,33] and ranges between 0 and 1, a larger Gini
coefficient indicating a larger ‘(un)evenness’ of the income distribution:

𝐺𝑐 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 |𝑐𝑖 − 𝑐𝑗 |

2𝑁
∑𝑁

𝑖=1 𝑐𝑖
; (11)

ereby, we apply it to the several definitions of centrality provided
bove. As a general comment, we would like to stress that a non-
ormalized centrality measure cannot be employed to compare nodes,
cross different configurations, in a fully consistent way. However,
f our only interest is that of quantifying the (un)evenness of the
istribution of our centrality measures, the absence of a normalization
erm does not make any difference: in fact, the Gini coefficient is not
ffected by it.

mall-world -ness. The study of the BLN centralization can be ap-
roached from a slightly different perspective by asking if the BLN is
increasingly) becoming a small-world system [34–36]. The usual way
f proceeding to answer such a question prescribes to check if

𝑑 =

∑𝑁
𝑖=1

∑𝑁
𝑗(≠𝑖)=1 𝑑𝑖𝑗

𝑁(𝑁 − 1)
∼ ln𝑁 (12)

.e. if the average path length grows logarithmically with the number
f nodes and if the average clustering coefficient BCC𝑖 =

∑𝑁
𝑖=1 BCC𝑖∕𝑁

is larger than the one predicted by an Undirected Random Graph Model
(URGM) tuned to reproduce the empirical density of links. Recently,
however, it has been argued that the same question can be answered
by considering the quantity named global efficiency, defined as

𝐸𝑔 =

∑𝑁
𝑖=1

∑𝑁
𝑗(≠𝑖)=1 𝑑

−1
𝑖𝑗

𝑁(𝑁 − 1)
, (13)

nderstood as an indicator of the ‘traffic capacity’ of a network and,
uite remarkably, not affected by the analytical problems suffered by
4

E

he average path length [35] - potentially diverging due to the presence
f couples of nodes belonging to disconnected components. Latora
t al. [35] have also defined a local efficiency as

𝑙 =
1
𝑁

𝑁
∑

𝑖=1
𝐸(𝐆𝑖), (14)

a quantity that can be evaluated by, first, calculating the efficiency
of the subgraph induced by the nearest neighbors of each node, upon
removing it and, then, averaging such numbers. Latora et al. [35]
have argued that while 𝐸𝑔 plays a role analogous to the inverse of
the average path length, 𝐸𝑙 plays a role analogous to the average
clustering coefficient: hence, small-world networks should have both a
large 𝐸𝑔 and a large 𝐸𝑙, i.e. should be very efficient in allowing nodes
to communicate in both a global and a local fashion.

Core–periphery detection. As it has emerged quite clearly from the
binary analysis of the BLN, just inspecting the evolution of centrality
measures can return a too simplistic picture of the network under
consideration. For this reason, we have checked for the presence of
mesoscopic ‘centralized’ structures such as the core–periphery one [37–
41], composed by a densely-connected subgraph of nodes surrounded
by a periphery of loosely-connected vertices. In order to do so, we have
implemented the approach recently proposed in [42] and prescribing
to minimize the score function

𝒲⫽ =
∑

𝑤∙≥𝑤∗
∙

∑

𝑤◦≥𝑤∗
◦

((𝑉∙
𝑤∙

))((𝑉◦
𝑤◦

))(( 𝑉 −𝑉∙−𝑉◦
𝑊 −𝑤∙−𝑤◦

))

((𝑉
𝑊

))
(15)

known as bimodular surprise1; here, 𝑉 = 𝑁(𝑁 − 1)∕2 is the total
number of node pairs, 𝑊 =

∑𝑁
𝑖=1

∑𝑁
𝑗=𝑖+1 𝑤𝑖𝑗 is the total weight of the

network, 𝑉∙ is the number of node pairs in the core portion of the
network, 𝑉◦ is the number of node pairs in the periphery portion of the
network, 𝑤∗

∙ is the observed number of core links and 𝑤∗
◦ is the observed

number of periphery links. From a technical point of view, 𝒲⫽ is the
𝑝-value of a multivariate negative hypergeometric distribution and the
multiset notation, according to which

((𝑉∙
𝑤∙

))

=
(𝑉∙+𝑤∙−1

𝑤∙

)

allows 𝒲⫽ to
be compactly rewritten in a way that nicely mirrors that of its binary
counterpart [42,43].

Benchmarking the observations. Along the guidelines of the analysis
carried out in [7], in what follows we benchmark our observations
by employing the recently-proposed null model called CReMA - the
acronym standing for Conditional Reconstruction Model A [44,45] - that
allows binary and weighted constraints to be defined in a disentangled
fashion. From a purely theoretical point of view, it is defined by the
maximization of the conditional Shannon entropy

𝑆(𝒲 |𝒜 ) = −
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln𝑄(𝐖|𝐀)𝑑𝐖 (16)

constrained to reproduce the strengths {𝑠𝑖}𝑁𝑖=1; the (conditional)
weighted distribution output by such an optimization procedure reads

𝑄(𝐖|𝐀) = 𝑒−𝐻(𝐖)

𝑍𝐀
=

𝑁
∏

𝑖=1

𝑁
∏

𝑗=𝑖+1
𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 ) =

𝑁
∏

𝑖=1

𝑁
∏

𝑗=𝑖+1
(𝛽𝑖 + 𝛽𝑗 )

𝑎𝑖𝑗 𝑒−(𝛽𝑖+𝛽𝑗 )𝑤𝑖𝑗 ;

(17)

otice the conditional character of the distribution above, embodied
y the term 𝑎𝑖𝑗 at the exponent — as a simple consistency check, the
robability that 𝑤𝑖𝑗 = 0 in case there is no link is 𝑞(𝑤𝑖𝑗 = 0|𝑎𝑖𝑗 =
) = 1 as it should be. The vector of parameters {𝛽𝑖}𝑁𝑖=1 defining

1 The Python package for surprise optimization, called ‘SurpriseMeM-
re’, is freely downloadable at the following URL: https://github.com/
milianoMarchese/SurpriseMeMore.

https://github.com/EmilianoMarchese/SurpriseMeMore
https://github.com/EmilianoMarchese/SurpriseMeMore
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the distribution above can be estimated via a (generalized) likelihood
aximization procedure [44] that leads to the system of 𝑁 equations

𝑖 =
𝑁
∑

𝑗(≠𝑖)=1
⟨𝑤𝑖𝑗⟩ =

𝑁
∑

𝑗(≠𝑖)=1

𝑝𝑖𝑗
𝛽𝑖 + 𝛽𝑗

, ∀ 𝑖; (18)

he coefficients {𝑝𝑖𝑗}𝑁𝑖,𝑗=1, instead, are treated as ‘prior information’ and,
s such, left ‘untouched’ by the estimation procedure above. In a sense,
e are free to combine the (conditional) weighted distribution above
ith the purely binary probability mass function ‘best’ encoding the
vailable information about the network structure. In what follows, we
ave considered

• the one defining the Undirected Binary Configuration Model
(UBCM) and following from the maximization of the traditional
Shannon entropy 𝑆 = −

∑

𝐀 𝑃 (𝐀) ln𝑃 (𝐀) constrained to reproduce
the degrees {𝑘𝑖}𝑁𝑖=1: the UBCM captures the idea that the probabil-
ity for any two nodes to establish a connection (solely) depends
on their degrees and can be fully determined by solving the 𝑁
equations

𝑘𝑖 =
𝑁
∑

𝑗(≠𝑖)=1
𝑝UBCM
𝑖𝑗 =

𝑁
∑

𝑗(≠𝑖)=1

𝑥𝑖𝑥𝑗
1 + 𝑥𝑖𝑥𝑗

, ∀ 𝑖; (19)

• the deterministic recipe 𝑝𝑖𝑗 ≡ 𝑎𝑖𝑗 , ∀ 𝑖 < 𝑗, accounting for the
case in which the prior knowledge concerns the entire network
topological structure, now treated as given.

While, in the first case, the generic set of coefficients {𝑝𝑖𝑗}𝑁𝑖,𝑗=1 is
nstantiated upon identifying 𝑝𝑖𝑗 ≡ 𝑝UBCM

𝑖𝑗 , ∀ 𝑖 < 𝑗, in the second one
he, identification simply reads 𝑝𝑖𝑗 ≡ 𝑎𝑖𝑗 , ∀ 𝑖 < 𝑗; in both cases, the
esolution of the related system of equations, carried out via the Python
ackage called ‘NEMTROPY’2, leads us to numerically determine the
orresponding vector of parameters {𝛽𝑖}𝑁𝑖=1.

Benchmarking a set of observations ultimately boils down at ver-
fying their ‘compatibility’ with the predictions output by a chosen
ull model, by testing their statistical significance against the null
odel itself. To this aim, one can proceed as follows: first, sampling

he ensemble induced by the chosen null model, by generating a
sufficiently large’ number of configurations (in all our experiments,
00); second, calculating the value of any quantity of interest over
ach configuration; third, deriving the corresponding ensemble CDF.
t this point, a 𝑝-value remains naturally defined; in what follows,
e will employ it to carry out one-tailed tests. Whenever tests of

his kind are considered, one may be interested in calculating either
he (ensemble) probability 𝑄(𝑋 ≥ 𝑋∗) of observing a value, for the
uantity of interest 𝑋, that is larger than the empirical one, 𝑋∗, or
he (ensemble) probability 𝑄(𝑋 ≤ 𝑋∗) of observing a value, for the
uantity of interest 𝑋, that is smaller than it; in both cases, if such a
robability is found to be smaller than a given threshold, the quantity
s deemed as statistically significant, hence incompatible with the
escription provided by the chosen null model — which (significantly)
nderestimates or overestimates it, respectively.

. Results

egree and strength distributions. Giving a look at the four snapshots de-
icted in Fig. 2 reveals the presence of a large heterogeneity, with nodes
aving a large degree/strength co-existing with nodes having a small
egree/strength; moreover, while nodes with a large degree also have
large strength (i.e. larger nodes are also darker), small, dark nodes

an be observed as well: in other words, an overall positive correlation
etween degrees and strengths co-exists with a large variability of the

2 The acronym stands for ‘Network Entropy Maximization: a Toolbox Run-
ing On Python’ and the package is freely downloadable at the following URL:
ttps://pypi.org/project/NEMtropy/.
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strength values — especially for what concerns the nodes with a small
connectivity (see Fig. 3).

As a first empirical analysis, we have inspected the functional form
of the degree distribution for four distinct snapshots, i.e. the days
24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019; to this aim,
we have plotted the cumulative density function (CDF), defined as
CDF(𝑘) = ∑

ℎ≥𝑘 𝑓 (ℎ) where 𝑓 (ℎ) is the fraction of nodes whose degree
is ℎ. As shown in Fig. 4, the degree distribution becomes broader as the
BLN evolves; moreover, running the code released by Clauset et al. [46]
to fit the functional form PDF(𝑘) = (𝛼−1)𝑘𝛼−1min 𝑘

−𝛼 on the data returns the
values 𝛼 = 1.9, 2.0, 2.1, 2.2 and 𝑘min = 1, 3, 14, 26 while the Kolmogorov–
Smirnov test returns the p-values 𝑝 = 0.02, 0.03, 0.04, 0.5. Hence, the
null hypothesis that the degrees are distributed according to a power-
law is never rejected, at the 1% significance level — while it is, for
the first three snapshots, at the 5% significance level. Overall, the null
hypothesis that the degrees are distributed according to a power law is
not rejected for the 85% of the total number of snapshots, at the 1%
significance level, and for the 71% of the total number of snapshots, at
the 5% significance level.

As a second empirical analysis, we have calculated the evolution of
the CDF of the weights, defined as CDF(𝑤) =

∑

𝑣≥𝑤 𝑓 (𝑣). Analogously to
what has been observed for the degrees, even the support of the weight
distribution has broadened throughout the entire BLN history (see
Fig. 5), although to a lesser extent. Fitting a log-normal distribution,

whose functional form reads PDF(𝑤) = (𝑤𝜎
√

2𝜋)−1𝑒−
(ln𝑤−𝜇)2

2𝜎2 , on the
data reveals that, at both the 1% and the 5% significance levels, the
Kolmogorov–Smirnov test does not reject the hypothesis that weights
are log-normally distributed when 𝑁 < 94 (i.e. from the fourth day
to the twelfth day). For our four snapshots, instead, the hypothesis is
rejected — notice that day 24-01-2018 is the thirteenth.

As a third empirical analysis, we have considered the evolution of
the CDF of the strengths, defined as CDF(𝑠) = ∑

𝑡≥𝑠 𝑓 (𝑠). The support of
he distribution is enlarged of a few orders of magnitude during the BLN
istory (see Fig. 6). Analogously to the case of the weights, we have
itted a log-normal distribution, whose functional form reads PDF(𝑠) =

𝑠𝜎
√

2𝜋)−1𝑒−
(ln 𝑠−𝜇)2

2𝜎2 , on the data: while the Kolmogorov–Smirnov test
returns the p-values 𝑝 = 0.061, 0.006, 4.4 ⋅ 10−7 and 1.6 ⋅ 10−7, hence does
not reject the hypothesis that strengths are log-normally distributed, at
both significance levels, for the first snapshot considered here, it does so
for the other three ones — an evidence seemingly indicating that, quite
early in its history, the BLN has started deviating more and more from
the picture provided by the distribution tested here. Overall, the null
hypothesis that the strengths are distributed according to a log-normal
is not rejected for the 16% of the total number of snapshots, at the 1%
significance level, and for the 5% of the total number of snapshots, at
the 5% significance level.

The picture provided by the three distributions above can be com-
plemented by the information provided by the Nakamoto index (see
Fig. 7). As its evolution clearly shows, the percentage of nodes ‘provid-
ing’ the 51% of the total number of links/the total weight progressively
reduces, as the BLN size enlarges: in particular, the total weight seems
to be distributed less evenly than the total number of connections —
as fewer nodes are needed to embody the (same) required percent-
age. This seems to confirm the appearance of nodes constituting the
aforementioned ‘topological’ majority.

Assortativity and hierarchy. Plotting the values of the average nearest
neighbors degree versus the degrees reveals the disassortative character
of the BLN, i.e. the presence of negative correlations between the
degrees: in other words, nodes with a large degree are (preferen-
tially) connected to nodes with a small degree and viceversa. To be
noticed that the UBCM-induced CReMA model successfully captures
such a trend, indicating that the information encoded into the degree
sequence, leading to

⟨ANND𝑖⟩ ≃

∑𝑁
𝑗(≠𝑖)=1⟨𝑎𝑖𝑗⟩⟨𝑘𝑗⟩ =

∑𝑁
𝑗(≠𝑖)=1 𝑝𝑖𝑗𝑘𝑗 , ∀ 𝑖 (20)
⟨𝑘𝑖⟩ 𝑘𝑖

https://pypi.org/project/NEMtropy/
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Fig. 3. Scattering the strength sequence versus the degree sequence reveals the presence of positive correlations between the two sets of quantities: the Pearson coefficient
describing them, on our usual four snapshots, amounts at 𝑟 = 0.84, 0.42, 0.66, 0.80, respectively.

Fig. 4. Cumulative density function of the degrees, for our usual four snapshots. The support of the distribution has become broader as the BLN has evolved. Fitting a power-law
PDF(𝑘) = (𝛼 − 1)𝑘𝛼−1min 𝑘

−𝛼 on the data, by running the code released by Clauset et al. [46], returns values amounting at 𝛼 = 1.9, 2.0, 2.1, 2.2 and 𝑘min = 1, 3, 14, 26 (see the dashed
lines) while the Kolmogorov–Smirnov test returns the p-values 𝑝 = 0.02, 0.03, 0.04, 0.5. Hence, the null hypothesis that the degrees are distributed according to a power-law is never
rejected, at the 1% significance level — while it is, for the first three snapshots, at the 5% significance level. Overall, the null hypothesis that the degrees are distributed according
to a power-law is not rejected for the 85% of the total number of snapshots, at the 1% significance level, and for the 71% of the total number of snapshots, at the 5% significance
level.

Fig. 5. Cumulative density function of the weights, for our usual four snapshots. The support of the distribution has become slightly broader as the BLN has evolved. Fitting a
log-normal distribution PDF(𝑤) = (𝑤𝜎

√

2𝜋)−1𝑒−
(ln𝑤−𝜇)2

2𝜎2 on the data reveals that, at both the 1% and the 5% significance levels, the Kolmogorov–Smirnov test does not reject the
hypothesis that weights are log-normally distributed when 𝑁 < 94 (i.e. from the fourth day to the twelfth day); for our four snapshots, instead, the hypothesis is rejected —
notice that day 24-01-2018 is the thirteenth. Each dashed line represents the best fit for the specific snapshot: the corresponding parameters read 𝜇 = −6.6,−8.1,−6.1,−5.5 and
𝜎 = 1.7, 2.1, 2.3, 2.0..

Fig. 6. Cumulative density function of the strengths, for our usual four snapshots. The support of the distribution is enlarged of a few orders of magnitude during the BLN
history. A log-normal distribution PDF(𝑠) = (𝑠𝜎

√

2𝜋)−1𝑒−
(ln 𝑠−𝜇)2

2𝜎2 , fitted on the data, lets the Kolmogorov–Smirnov test returns the p-values 𝑝 = 0.061, 0.006, 4.4 ⋅ 10−7 and 1.6 ⋅ 10−7.
Hence, the null hypothesis that strengths are log-normally distributed is not rejected for the first snapshot while it is for the last three ones — at both significance levels. Overall,
the null hypothesis that the strengths are distributed according to a log-normal is not rejected for the 16% of the total number of snapshots, at the 1% significance level, and
for the 5% of the total number of snapshots, at the 5% significance level. Each dashed line represents the best fit for the specific snapshot: the corresponding parameters read
𝜇 = −6.0,−6.7,−4.7,−4.0 and 𝜎 = 2.0, 2.3, 3.0, 2.8..
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Fig. 7. Evolution of the Nakamoto index for the degrees and the strengths, plotted
versus the total number of nodes: as the size of the system enlarges, the percentage of
nodes ‘providing’ the 51% of the total number of links/the total weight progressively
reduces, an evidence pointing out that nodes embodying a ‘topological’ kind of majority
indeed appear. Moreover, the total weight seems to be distributed less evenly than the
total number of connections.

with 𝑝𝑖𝑗 ≡ 𝑝UBCM
𝑖𝑗 , ∀𝑖 < 𝑗 and where the symbol ≃ indicates that we have

approximated the expected value of a ratio as the ratio of the expected
values, is enough to account for the correlations between the degrees
as well. An analogous decreasing trend characterizes the values of the
average nearest neighbors strength when plotted versus the degrees,
i.e. nodes with a large degree are (preferentially) connected to nodes
with a small strength and viceversa; as for its binary counterpart, the
UBCM-induced CReMA model successfully reproduces the empirical
ANNS values, indicating that the information encoded into the degree
and the strength sequences, leading to

⟨ANNS𝑖⟩ ≃
∑𝑁

𝑗(≠𝑖)=1⟨𝑎𝑖𝑗⟩⟨𝑠𝑗⟩

⟨𝑘𝑖⟩
=

∑𝑁
𝑗(≠𝑖)=1 𝑝𝑖𝑗𝑠𝑗

𝑘𝑖
, ∀ 𝑖 (21)

ith 𝑝𝑖𝑗 ≡ 𝑝UBCM
𝑖𝑗 , ∀ 𝑖 < 𝑗 successfully accounts for the correlations

etween the degrees and the strengths as well (see Fig. 8). On the other
and, plotting the values of the clustering coefficient versus the degrees
eveals the hierarchical character of the BLN: nodes with a larger
egree tend to participate into a smaller number of connected triples
han nodes with a smaller degree and viceversa; the UBCM-induced
ReMA model, leading to

BCC𝑖⟩ ≃

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1⟨𝑎𝑖𝑗⟩⟨𝑎𝑗𝑘⟩⟨𝑎𝑘𝑖⟩

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1⟨𝑎𝑖𝑗⟩⟨𝑎𝑖𝑘⟩

=

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑝𝑖𝑗𝑝𝑗𝑘𝑝𝑘𝑖

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑝𝑖𝑗𝑝𝑖𝑘

, ∀ 𝑖 (22)

ith 𝑝𝑖𝑗 ≡ 𝑝UBCM
𝑖𝑗 , ∀ 𝑖 < 𝑗 is able to capture such a trend as well. The

ame decreasing trend, instead, does not characterize the values of the
eighted clustering coefficient when plotted versus the degrees which,

nstead, appears as rather flat — interestingly, this is no longer true
hen the weighted clustering coefficient values are plotted versus the

trengths: in this case, a clear rising trend is visible, signaling that nodes
ith a larger strength tend to participate into ‘heavier’ connected triples
f nodes. Again, the UBCM-induced CReMA model, predicting

WCC𝑖⟩ ≃

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1⟨𝑤𝑖𝑗⟩⟨𝑤𝑗𝑘⟩⟨𝑤𝑘𝑖⟩

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1⟨𝑎𝑖𝑗⟩⟨𝑎𝑖𝑘⟩

=

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1⟨𝑤𝑖𝑗⟩⟨𝑤𝑗𝑘⟩⟨𝑤𝑘𝑖⟩

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑝𝑖𝑗𝑝𝑖𝑘

, ∀ 𝑖 (23)

ith 𝑝𝑖𝑗 ≡ 𝑝UBCM
𝑖𝑗 , ∀ 𝑖 < 𝑗 successfully reproduces the empirical WCC

alues, indicating that the information encoded into the degree and the
trength sequences successfully accounts for the behavior of third-order
roperties as well (see Fig. 9).
7

isparity. As anticipated in the paragraph introducing such a quantity,
he disparity index of node 𝑖 reads 𝑌𝑖 = 1∕𝑘𝑖 in case weights are equally
istributed among the neighbors of node 𝑖. Fig. 10 shows the scatter
lot of 𝑌𝑖 as a function of 𝑘𝑖 (since it is plotted in a log–log scale, the
unction 𝑦 = −𝑥 becomes the trend signaling that weights are uniformly
istributed among the neighbors of each node): generally speaking,
any values lie above the 𝑦 = −𝑥 line, an evidence indicating that

some kind of ‘excess concentration’ of weight (in one or more links)
is indeed present - a tendency which is particularly evident for nodes
with smaller degree.

Let us now compare the empirical disparity values with the pre-
dictions of the null models defined within our CReMA framework. To
his aim, let us explicitly calculate the expected value of disparity, that
eads

𝑌𝑖⟩ ≃

∑𝑁
𝑗(≠𝑖)=1⟨𝑤

2
𝑖𝑗⟩

⟨𝑠2𝑖 ⟩
=

∑𝑁
𝑗(≠𝑖)=1

(

Var[𝑤𝑖𝑗 ] + ⟨𝑤𝑖𝑗⟩
2)

Var[𝑠𝑖] + ⟨𝑠𝑖⟩2

=
Var[𝑠𝑖] +

∑𝑁
𝑗(≠𝑖)=1⟨𝑤𝑖𝑗⟩

2

Var[𝑠𝑖] + 𝑠2𝑖
, ∀ 𝑖 (24)

here

𝑤𝑖𝑗⟩ =
𝑝𝑖𝑗

𝛽𝑖 + 𝛽𝑗
, ∀ 𝑖 < 𝑗 (25)

and

Var[𝑠𝑖] =
𝑁
∑

𝑗(≠𝑖)=1
Var[𝑤𝑖𝑗 ] =

𝑁
∑

𝑗(≠𝑖)=1

𝑝𝑖𝑗
(𝛽𝑖 + 𝛽𝑗 )2

, ∀ 𝑖 (26)

naturally, for the present analysis we have considered both the case
𝑖𝑗 ≡ 𝑝UBCM

𝑖𝑗 , ∀ 𝑖 < 𝑗 and the case 𝑝𝑖𝑗 ≡ 𝑎𝑖𝑗 , ∀ 𝑖 < 𝑗). As Fig. 10
hows, disparity is, generally speaking, in agreement with our bench-
ark models. However, the calculation of the percentage of nodes

or which 𝑄(𝑌𝑖 ≥ 𝑌 ∗
𝑖 ) < 0.05, for our usual four snapshots, reveals

t to be 0%, 3.0%, 9.1%, 11% for the UBCM-induced CReMA model and
%, 5.6%, 15%, 17% for the deterministic CReMA model: in other words,

the percentage of nodes whose empirical disparity is significantly larger
than predicted by one of our two null models is rising throughout the
entire BLN history. This evidence suggests that, as the BLN evolves, its
vertices treat their neighbors less and less equally: indeed, they seem
to place weights in a way that increasingly ‘favors’ some of the links
surrounding them - a result that remains true even when a null model
constraining the entire topology of the BLN is employed.3

Centrality. Let us now comment the results concerning the weighted
centrality measures considered in the present work. As a general ob-
servation, the weighted cases are characterized by trends which are
overall similar to the trends characterizing the binary cases. As already
observed for the purely binary BLN structure, the evolution of the
Gini index for most centrality measures points out the latter ones to
grow (strongly) unevenly distributed throughout the entire BLN history.
While the rise of the Gini coefficient for the weighted degree, between-
ness and eigenvector centrality measures suggests the appearance of
nodes with ‘heavy’ connections – further confirmed by the strength
distribution, which is a fat-tailed one – likely crossed by many paths
and well connected between themselves, the flat trend characterizing
the evolution of the closeness centrality confirms what has been already
observed in the purely binary case, i.e. that the aforementioned ‘hubs’
ensure the vast majority of nodes to be reachable (hence, to be close to
each other) quite easily.

Let us now compare the empirical trends of our four centrality mea-
sures with the ones predicted by our two null models. Fig. 11 reveals

3 To be noticed that our null models also underestimate disparity values:
owever, the corresponding percentages (amounting at 3.2%, 4.3%, 5.8%, 5.2%

for the UBCM-induced CReMA model and at 12.8%, 10.8%, 13.0%, 13.6% for the
deterministic CReMA model, for our usual four snapshots), are typically lower
and not increasing.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112620J.-H. Lin et al.

a
n
r

o
i
W

t
o
i
a
c
o

Fig. 8. ANND𝑖, ⟨ANND𝑖⟩ values scattered versus 𝑘𝑖 (upper panels) and ANNS𝑖, ⟨ANNS𝑖⟩ values scattered versus 𝑘𝑖 (bottom panels) for our usual four snapshots (all trends are
veraged over the classes of nodes with the same degree). Both trends clearly signal a disassortative behavior, i.e. nodes with a large degree are (preferentially) connected to
odes with a small degree/small strength and viceversa. While the UBCM-induced CReMA model successfully captures such a disassortative trend, the deterministic CReMA model
eproduces both the ANND and the ANNS values exactly.
Fig. 9. BCC𝑖, ⟨BCC𝑖⟩ values scattered versus 𝑘𝑖 (upper panels) and WCC𝑖, ⟨WCC𝑖⟩ values scattered versus 𝑘𝑖 (bottom panels) for our usual four snapshots (all trends are averaged
ver the classes of nodes with the same degree). While the trend of the BCC clearly signals a hierarchical behavior, i.e. the tendency of nodes with a larger degree to participate
nto a smaller number of connected triples than nodes with a smaller degree and viceversa, this does not seem to be the case for the WCC values when plotted versus the degrees.

hile the UBCM-induced CReMA model successfully captures both trends, the deterministic CReMA model reproduces only the BCC values exactly.
hat the UBCM-induced CReMA model tends to overestimate the values
f the Gini index for the weighted degree and closeness centrality,
.e. the empirical weighted degree and closeness centrality measures are
lways significantly lower than their predicted counterparts. For what
oncerns the weighted betweenness centrality, instead, the percentage
f snapshots for which 𝑄(𝐺WBC ≥ 𝐺∗

WBC) < 0.05 amounts at ≃ 87%,
i.e. the UBCM-induced CReMA model significantly underestimates the
weighted betweenness centrality for ≃ 87% of the total number of
snapshots. Analogously, the same null model tends to underestimate the
values of the Gini index for the weighted eigenvector centrality roughly
one third of the times: in fact, the percentage of snapshots for which
𝑄(𝐺 ≥ 𝐺∗ ) < 0.05 amounts at ≃ 33%. Interestingly, the empirical
8

WEC WEC
WBC and WEC values are compatible with the predictions output by
the UBCM-induced CReMA model, on the ‘remaining’ snapshots.

The deterministic CReMA model, instead, performs slightly better
in reproducing the centrality patterns characterizing the BLN: in fact,
while it still overestimates the Gini index for the weighted degree
centrality, the percentage of snapshots for which 𝑄(𝐺WCC ≥ 𝐺∗

WCC) <
0.05 amounts at ≃ 96%, i.e. the deterministic CReMA model significantly
underestimates the weighted closeness centrality for ≃ 96% of the total
number of snapshots. For what concerns the weighted betweenness
centrality, the percentage of snapshots for which 𝑄(𝐺WBC ≥ 𝐺∗

WBC) <
0.05 amounts at ≃ 50%, i.e. the deterministic CReMA model significantly
underestimates the weighted betweenness centrality roughly half of the
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Fig. 10. Upper panels: empirical disparity values scattered versus the degrees, for our usual four snapshots. As the plots reveal, the vast majority of strength values is not evenly
distributed across the connections characterizing each node, i.e. 𝑌𝑖 > 1∕𝑘𝑖 for the vast majority of nodes. Middle panels: expected disparity values output by the UBCM-induced

ReMA model scattered versus the empirical disparity values. Bottom panels: expected disparity values output by the deterministic CReMA model scattered versus the empirical
isparity values. The empirical disparity values are, generally speaking, in agreement with our benchmark models; however, the percentage of nodes for which 𝑄(𝑌𝑖 ≥ 𝑌 ∗

𝑖 ) < 0.05,
or our usual four snapshots, amounts at 0%, 3.0%, 9.1%, 11% for the UBCM-induced CReMA model and at 0%, 5.6%, 15%, 17% for the deterministic CReMA model: in other words, the
ercentage of nodes whose empirical disparity is significantly larger than predicted by one of the two null models considered here is rising throughout the entire BLN history -
.e. its vertices increasingly ‘favor’ some of the links surrounding them.
n
t
p
2
t
t
w

imes. Lastly, for what concerns the weighted eigenvector centrality,
he percentage of snapshots for which 𝑄(𝐺WEC ≤ 𝐺∗

WEC) < 0.05
mounts at ≃ 83%, i.e. the deterministic CReMA model significantly
verestimates the weighted eigenvector centrality for ≃ 83% of the
otal number of snapshots. The deterministic CReMA model distributes
eights more evenly than observed, hence underestimating disparity
nd letting the strength distribution become wider: this has an inter-
sting consequence, i.e. letting the size of the core under this model
ecome larger than observed – likely, because nodes with relatively
ow strength become, now, part of the core – while still allowing the
nevenness of the WEC distribution rise.

Overall, these results point out a behavior that is not reproducible
y just enforcing the degree and the strength sequences — irrespec-
ively from the chosen index: in particular, the behavior of the weighted
etweenness centrality points out that both null models – even if to a
ifferent extent – predict a more-even-than-observed structure.

mall-world -ness. The evidence that the BLN structure is
ore-centralized-than-expected rises an interesting question, i.e. if the
LN is small-world or not. From a purely empirical perspective, an-
wering this question amounts at checking the behavior of the average
ath length, 𝑑, and that of the average clustering coefficient, BCC =

∑

𝑖 BCC𝑖∕𝑁 [34–36].
Fig. 12 shows the results of these two analyses: while the evolution

f 𝑑 is described quite accurately by the function ln𝑁 during the first
snapshots of the BLN history, its trend has progressively become more
and more similar to the smoothest one characterizing the function
9

ln ln𝑁 - which has reached the value ≃ 3.5 on the snapshot with 104

odes. For what concerns the average clustering coefficient, one needs
o compare it with the value predicted by the URGM, i.e. the null model
rescribing to link each pair of nodes with the same probability 𝑝 =
𝐿∕𝑁(𝑁 −1): as Fig. 12 shows, the URGM significantly underestimates
he average clustering coefficient throughout the entire BLN history;
aken together, there results indicate that the BLN is indeed small-
orld. On the other hand, the UBCM overestimates BCC =

∑

𝑖 BCC𝑖∕𝑁
during the first half of its history (for ≃ 40% of the total number of
snapshots), thus signaling a tendency of our system to avoid closing
paths among triples of nodes.

An alternative way of testing small-world -ness is that of checking
the behavior of efficiency. Overall, the global efficiency amounts at
𝐸𝑔 ≃ 0.4 and it is significantly underestimated by the UBCM throughout
the entire history of the BLN. This indicates that the BLN exchanges
information more-efficiently-than-predicted by a null model retaining
only the information provided by degrees and can be a consequence of
the presence of hubs crossed by many paths that shorten the topological
distance between (any pair of) nodes.

These results suggest that the BLN has progressively self-organized
to ‘keep the overall distances low’. What about efficiency from a local
point of view? For what concerns the local efficiency, the percentage
of nodes for which 𝑄(𝐸𝑙 ≥ 𝐸∗

𝑙 ) < 0.05 amounts at 75%: hence,
the UBCM significantly underestimates it for a large portion of the
BLN snapshots — as evident from Fig. 12, the most recent ones. As

the local efficiency 𝐸(𝐆𝑖) provides information about how efficient
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Fig. 11. Upper and middle panels: evolution of the Gini coefficient of the empirical weighted centrality values (blue dots) and of its expected counterpart, under the UBCM-induced
CReMA model (red dots, upper panels) and the deterministic CReMA model (yellow dots, bottom panels). The rise of the Gini coefficient for the weighted degree, betweenness
and eigenvector centrality points out that the distribution of centrality measures becomes increasingly uneven while the flat trend characterizing the evolution of the closeness
centrality confirms what has been observed in the purely binary case: the aforementioned ‘hubs’ ensure the vast majority of nodes to be reachable (hence, to be close to each other)
quite easily. Generally speaking, our null models tend to significantly underestimate both the weighted betweenness centrality and the weighted eigenvector centrality, signaling
the presence of fewer-nodes-with-heavier-connections than predicted by chance. Bottom panels: comparison between the BLN on day 20-03-2018, a configuration generated by the
UBCM-induced CReMA model and a configuration generated by the deterministic CReMA model for the same day. The latter one distributes weights more evenly than observed,
hence underestimating disparity and letting the strength distribution become wider: this has an interesting consequence, i.e. letting the size of the core become larger than observed,
under this model – it amounts at the 12%, the 27% and the 21% of the total number of nodes on the considered day – while still allowing the unevenness of the WEC distribution
rise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the communication between the first neighbors of node 𝑖 is, upon its
removal, our results seem to indicate that the BLN is becoming more
and more ‘fault tolerant’ than its randomized counterpart (interestingly,
it appeared to be much more fragile during the first half of its history).
This result can be understood by imagining that a larger number of
redundant connections has been established, among nodes, in the more
recent snapshots of the BLN history — whence the rise of the average
clustering coefficient as well.

As an additional exercise, let us inspect the evolution of the BLN
global efficiency as nodes are removed either randomly or sequentially,
after they have been sorted in decreasing order of weighted degree,
closeness, betweenness and eigenvector centrality. The results of our
exercise are shown in Figs. 12 and 13. The depicted trends of Fig. 12
are compatible with a robust-yet-fragile architecture, i.e. a topological
structure that is robust against a random removal of nodes but fragile
against a targeted removal of nodes (e.g. an attack) - or, more correctly,
more robust against a random node removal than against a targeted
node removal: notice how steeper the decrease of 𝐸𝑔 is in the second
case; moreover, removing nodes according to their WBC reduces the
BLN global efficiency to the largest extent (for the vast majority of
10
snapshots, larger than removing nodes according to their WDC, WCC
and WEC). Fig. 13 sheds light on the reason why such an effect is
observed: removing nodes induces a fragmentation of the BLN structure
into many (disconnected) components.

Fig. 12 also shows that the nodes whose removal brings the most
severe damages to the BLN are those belonging to the core (see the
next paragraph), whose size shrinks from ≳ 20% to ≃ 10% of the total
number of nodes.

Core–periphery detection. The result concerning the underestimation,
by our null models, of the Gini index for the weighted eigenvector
centrality - i.e. the presence of well connected nodes which, in turn, are
also well connected among them – let us suppose the BLN to be char-
acterized by a statistically significant core–periphery structure: here,
however, we are interested in revealing the presence of a weighted
core–periphery structure, i.e. a kind of mesoscale organization where
core nodes are the ones sharing the ‘heaviest’ connections – and not
just those with ‘many’ connections.

To this aim, we adopt a recently proposed approach, based upon
the surprise formalism. In particular, we consider the evolution of the
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Fig. 12. Upper panels: (a) evolution of the BLN average path length 𝑑 and of the functions ln𝑁 and ln ln𝑁 ; (b) evolution of the empirical average clustering coefficient BCC
(blue dots) and of its expected values ⟨BCC⟩ under the URGM (green stars) and the UBCM (red squares); (c) evolution of the empirical global efficiency 𝐸𝑔 (blue dots) and of
its expected values ⟨𝐸𝑔⟩ under the UBCM (red squares); (d) evolution of the empirical local efficiency 𝐸𝑙 and of its expected values ⟨𝐸𝑙⟩ under the UBCM (red squares). The
BLN is indeed characterized by a small-world structure; moreover, while it has been always more-globally-efficient-than-expected under the UBCM, it has ‘recently’ become also
more-locally-efficient-than-expected under the same null model. Middle panels: evolution of the BLN global efficiency, for our usual four snapshots, when nodes are removed either
randomly (green trend) or sequentially, after having been sorted in decreasing order of weighted degree (blue trend), closeness (red trend), betweenness (yellow) and eigenvector
(purple) centrality. The trends above characterize a robust-yet-fragile architecture: robust against a random node removal but fragile against a targeted node removal (e.g. an
attack). Bottom panels: percentage of core nodes found within the set of nodes removed according to one of the two aforementioned criteria. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Number of connected components (NCC) into which the BLN structure fragments upon removing nodes scattered versus the number of nodes (𝑁𝑟 - ranked by degree,
closeness, betweenness and eigenvector centrality) whose removal induces them..
weighted bimodular surprise, 𝒲⫽, across the entire BLN history: it
reveals that the statistical significance of the recovered core–periphery
structure increases, a result leading to the conclusion that the descrip-
tion of the BLN structure provided by such a model becomes more and
11
more accurate as the network evolves. As an example, Fig. 13 shows
the detected core–periphery structure on the snapshots depicted in the
same figure: the nodes identified as belonging to the core and to the
periphery are, respectively, colored in orange and purple. Notice also
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Fig. 14. Upper panels: core–periphery structure, as revealed by the weighted surprise, 𝒲⫽, for our four usual snapshots (core nodes are colored in orange and periphery nodes
re colored in purple); the size of the nodes is proportional to their strength: hence, the nodes constituting the core of the network are precisely those with a larger strength.
ottom panels: (a) values of the size of the binary core scattered versus the values of the size of the weighted core; (b) evolution of (the percentage of) the overlap between the
et of nodes belonging to the binary core and the set of nodes belonging to the weighted one, estimated via the Jaccard similarity, on a selected subset of snapshots of the BLN;
volution of the percentage of the total network weight embodied by ‘core connections’, amounting at ≃ 68% in the binary case (blue circles) and at ≃ 77% in the weighted one

(red diamonds). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that we have drawn the node size proportionally to the node strength:
hence, larger nodes, i.e. the ones sharing the ‘heaviest’ connections, are
precisely those constituting the core of the network.

First, let us check the correspondence between the nodes in the core
(whose size will be indicated as 𝑁𝑐𝑜𝑟𝑒) and vertices with large weighted
eigenvector centrality by ranking the nodes in decreasing order of WEC
and checking the percentage of top 𝑁𝑐𝑜𝑟𝑒 nodes that also belong to the
ore: it amounts at 56%, 60%, 57%, 62%, for our usual four snapshots.
hen, let us compare the composition of the purely binary core —
etected in [7] - with that of the weighted core. As Fig. 14 shows, a
ice correspondence between the size of binary core and that of the
eighted one indeed exists although, from a certain moment of the BLN
istory on, the binary core seems to ‘grow slower’ than the weighted
ne which, instead, enlarges to reach a size of ≃ 600 nodes: this further
onfirms that the nodes with a ‘large’ strength, revealed by surprise as
he most central ones, do not necessarily coincide with those having a
large’ degree. The evolution of (the percentage of) the overlap between
he set of nodes belonging to the binary core and the set of nodes
elonging to the weighted one further confirms that the two sets do
ot coincide perfectly, although the Jaccard similarity steadily points
ut a ≃ 60% of overlap: in other words, 60% of the nodes belong to both
ores — likely, those hubs whose degree and strength are large enough
o justify their coreness in both senses; similarly, the percentage of the
otal network weight embodied by ‘core connections’ amounts at ≃ 68%
n the binary case and at ≃ 77% in the weighted one.

. Discussion

The analysis of the binary BLN structure carried out in [7] has re-
ealed a system whose topology has become increasingly characterized
y star-like structures, whose centers are constituted by ‘hubs’ to which
12
any nodes having a (much) small(er) degree, in turn, attach. Such a
tructure – whose disassortativity is confirmed by scattering the ANND
alues versus the degrees – could explain the more-than-expected level
f unevenness characterizing the betweenness and the eigenvector
entralization indices, suggesting them to be due to the emergence of
hannel-switching nodes — apparently, an unavoidable consequence of
he way BLN is designed: on the one hand, as longer routes are more
xpensive, any two BLN users will search for a short(est) path; on the
ther, nodes have the incentive to become as central as possible, in
rder to maximize the transaction fees they may earn.

The tendency to centralization is observable even when considering
eighted quantities, as the percentage of nodes whose connections
mbody the 51% of the total weight progressively reduces and the
ini coefficient of several (weighted) centrality measures steadily in-
reases throughout the entire BLN history. This clearly points out the
o-existence of nodes playing deeply different ‘structural’ roles, with
many’ peripheral vertices co-existing with ‘few’ core ones; if, on the
ne hand, this structure allows the global efficiency to achieve a large
alue (i.e. hubs facilitate the global exchange of information, being at
he origin of another structural BLN peculiarity, i.e. its small-world -
ess), on the other it highlights the tendency of the BLN architecture to
ecome increasingly ‘less distributed’, a process having the undesirable
onsequence of making it increasingly fragile towards failures and
ttacks.

Distinguishing between the two is crucial, in order to properly
nderstand the BLN robustness to ‘damages’. While resilience towards
ailures can be tested by looking at how the global efficiency ‘reacts’
o random node removal, resilience towards attacks can, instead, be
uantified by implementing targeted removals of the ‘most important’
odes. To this aim, we have ranked nodes in decreasing order of
eighted degree, closeness, betweenness and eigenvector centrality
nd removed them, sequentially: the global efficiency drops rapidly
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after few (core) nodes are deleted — in fact, for almost all snapshots,
removing just one top node (according to any of the aforementioned
riteria) is enough to disconnect the graph. Moreover, since top nodes
re likely to be part of the core – whose size shrinks from ≳ 20% to ≃

10% of the total number of nodes – our results indicate that the vertices
belonging to it are precisely those whose removal causes the major
structural damages. Random failures, instead, cause the decrease of 𝐸𝑔
to be much less steep: taken together, the results above seem to indicate
that the BLN topology is an example of robust-yet-fragile architecture,
i.e. a structure that is robust against a random node removal but fragile
against a targeted node removal (e.g. an attack).
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